
Verilog-AMS in Gnucap (draft)

Felix Salfelder

FSIC 24

Content

▸ Gnucap, Verilog, what is it?

▸ Gnucap & Modelgen Update

▸ paramset improvements

▸ Verilog-A coverage in Modelgen

▸ Available models, update

▸ License amendments

▸ Benchmaking and outlook

▸ Recent user contributions

▸ Conclusion

Gnucap & history

▸ 1973-1989. SPICE 1-3: final: ’93

▸ 1990. ACS, Al’s Circuit Simulator

▸ 1992... GPL’d, The original ”fast spice”

▸ 1995 Verilog (as we know it)

▸ 2000 Verilog-AMS, early traces

▸ 2001... ACS Renamed to Gnucap, a GNU project

▸ 2022 supported by NLnet (ongoing)

▸ 2023 initial Modelgen-Verilog

Gnucap Plug-In interface

▸ avoid monolith, allow user contributions

▸ no need to start from scratch

▸ endless customisation and experimentation

▸ present research without maintenance burden.

Verilog-AMS (as of 2014)

▸ Based on Verilog, IEEE Std 1364-2005

▸ Analog, digital and in between

▸ Pull back things that drifted apart

▸ No known complete implementation

Intended: unification

▸ Verilog-A: ready for system level analog

▸ Verilog-AMS build brige to Verilog-95

▸ SPICE subsystem preserved. Accessible from Verilog-A
(akin to extern ”C” in C++, or
call Fortran function from C program)

... as opposed to

▸ Verilog-95: digital model description

▸ SPICE: here goes the analog

▸ Verilog-A: build compact models for use in SPICE

Modelgen-Verilog: overview

▸ Intent: A replacement for ADMS

▸ Standardisation: Verilog-AMS

▸ Goal: VLSI-ready Simulation

▸ Inspired by modelgen architecture

▸ Status: Way ahead CMC subset of Verilog-A

Main Features

▸ Code generated by program, not template

▸ Programmed in suitable language

▸ Support for paramset, modular design

▸ Output source code or model code

Roadmap

▸ Discrete subset of Verilog-AMS

▸ Catch up with simple optimisations

▸ Support SPICE input (.subckt), maybe SPICE output (C)

Verilog-A coverage in Modelgen-Verilog
▸ Flow/Potential contributions, switches, named branches

▸ Analog primitives and filters
basic arithmetic, idt, ddt
slew, absdelay laplace *, zi *
ac stim, basic ac noise

▸ Analog control structures

▸ hierarchy

▸ Compiled paramset
some data flow analysis
topological collapse, dead code elimination
dump back to input format

▸ Convergence checking (from venerable/legacy modelgen)

Current WIP/TODO

▸ transition, last crossing, noise tables

▸ extend towards digital

▸ generate

Gnucap, available models

Spice-wrapper: Use SPICE3 models (C interface)

▸ automated tests

▸ new: also wrapping noise sources

▸ cover ngspice models until 42 etc.

Verilog-A primitives (Annex C)

▸ implemented in Verilog-A

▸ requirement for compliance, also: test piece

▸ have: R, L, C, D, trln, vsine. WIP: mosfet (harder)

”CMC models”

▸ Verilog-A subset agreed upon by council

▸ mostly work unmodified with Gnucap, need more testing

More QUCS models in Gnucap/Gnucsator

▸ ”SPfile”, ”TLIN”, ”MLIN”, ”Inoise”, ”Vnoise”

▸ (Exploring Verilog-AMS integration, more later)

License update

▸ What license is the modelgen output subject to?

▸ Can I distribute binaries without source?

▸ “but it’s under GPL?!”.

From now on:

▸ The modelgen output is subject to license of the input
(Bug Accelera about their disciplines header, or use ours.)

▸ Same for binaries compiled/linked with modelgen+gcc.
By means of a “linking exception”

▸ Applies to unmodified modelgen

Revisit paramset

▸ FSiC’23: paramset overloading explained

▸ Now: paramset in the model compiler

▸ Use optimised binaries where applicable
.. following overloading rules.

Standard needs amendment to streamline paramset use (RFC).

▸ All prototypes are just prototypes

▸ Regardless of their internal structure

▸ A device instance resolves to the suitable one

▸ Parameters do not need default values (to be implemented)

Making sense of $param given

module M([...]);

parameter real p=1;

[..] $param given(p) [..]

endparamset

paramset M M1

parameter real p=17;

[..] $param given(p) [..] // const true, p=17

endparamset

paramset M M1

// parameter real p=1 // removed

[..] $param given(p) [..] // const false, p=1

endparamset

paramset M M // re-use name, just specialise

parameter real p; // no default.

parameter real q=1 from [1:1]; // specialise

[..] $param given(p) [..] // hah, fixed.

endparamset

Benchmark I: revisit ISCAS85

▸ ISCAS85 c6288: 16 bit multiplier netlist

▸ Originally targetting discrete simulators

▸ Analog version: add semiconductor models

▸ modelgen @FSiC’23: some dc analysis and traces

Benchmark II: run time behaviour

▸ Previous talk: 16 bit dcop 12 seconds with KLU & OpenVAF

▸ Quick check: restrict to dc/op

▸ sweep multiplier width 1..25

▸ measure model evaluation time and LU time

▸ use proof-of-concept matrix interface
(with experimental sparse solver to save a few cycles)

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25

lu

Benchmark III: roadmap

▸ dc time quadratic in number of nodes, as expected.

▸ 150s wall time for 16 bit multiplier dc, 284 iterations

▸ Eval time improved since ’22 (e.g. thanks to paramset)

▸ LU time (7 seconds), same ballpark as SPICE / VACASK

▸ (Pending optimisations in modelgen code.)

Next steps in ’24: selective trace

▸ Potential for linear time dcop

▸ Expecting significant speedup in transient

▸ Finally outperform SPICE algorithm

User contributions

▸ QUCS Qt5 port (Matthias K.)

▸ Vector fitting algorithm (Seán H.)

▸ Convolution based analog filter (Seán H.)

Very useful. Big Thanks!

Contribution: Vector Fitting, Convolution
VF: An approximation scheme

▸ Input: map frequencies to complex values
aka. Y, Z or S-parameters

▸ Output: Some kind of Padé approximation/interpolation

Why?

▸ Transmission line, RF, modelling

▸ Standardised in Verilog-AMS: laplace *
Takes rational function coefficients

▸ ... and supports transient simulation (e.g. for SI),
superior to HB in some applications

Convolution for filtering?

▸ Modelgen laplace *: (ad-hoc?) subcircuit expansion.

▸ Convolution expected to be faster, where applicable.

▸ laplace *d needs root finding first.

▸ They are all plugins anyway, use whatever works.

Contribution: QUCS Qt5 I

▸ Native Port, ditch Qt3/4 wrapper

▸ Compiles & runs on modern systems

▸ Still due for refactoring

▸ But some low hanging fruit available

Acts as a graphical UI for Gnucap (Gnucsator)

Contribution: QUCS Qt5 II
▸ New devices added from Qucsator, mostly RF, noise
▸ Noise analysis now available
▸ TODO: Schematic file format update
▸ TODO: expose Verilog-AMS modelling

module tline0(out0, out1, in0, in1)

[see modelgen-verilog/examples for full source code]

parameter real delay = 1. from (0:inf);

parameter real L = 1. from (0:inf);

parameter real z0 = 50. from (0:inf);

localparam real real_td = L*delay;

analog begin

vfwd = absdelay(2.*V(in) - V(ref), real_td);

vref = absdelay(2.*V(out)- V(fwd), real_td);

I(fwd) <+ V(fwd) - vfwd;

I(ref) <+ V(ref) - vref;

I(out) <+ V(out) - vfwd/z0;

I(in) <+ V(in) - vref/z0;

end

endmodule

Conclusion

▸ Verilog-AMS coverage growing

▸ Contributions are possible and trickling in

▸ Algorithms for VLSI now tangible

More collaboration needed

▸ Integration with other tools

▸ Standardise, share common ground
(compete like gcc competes with llvm)

▸ User extensions still welcome (even osdi wrapper)

Research questions

▸ KLU performance but partial updates?

▸ How about optimal device ordering?

▸ Efficient PCB modelling / device extraction?

▸ Verilog-AMS extensions: reliability?

