
Verilog-AMS in Gnucap

Felix Salfelder

FSIC 25



Content

▸ Gnucap now and history

▸ Verilog-AMS, what is it?

▸ Verilog-AMS coverage in Modelgen

▸ Gnucap & Modelgen-Verilog recent achievements

▸ Data exchange: Schematics explained

▸ Roadmap

▸ Conclusion



Gnucap & historical context

▸ The Gnu Circuit Analysis Package

▸ Modular design, C++ codebase

▸ Small library with (user) extensions

History

▸ 1973-1989. SPICE 1-3: final: ’93

▸ 1990. ACS, Al’s Circuit Simulator

▸ 1992... GPL’d, The original ”fast spice”

▸ 1995 Verilog (as we know it)

▸ 2000 Verilog-AMS, early traces

▸ 2001... ACS Renamed to Gnucap, a GNU project

▸ 2004 Larrys talk “Is it time for SPICE4”

▸ 2022 Gnucap supported by NLnet (ongoing)

▸ 2023 initial Modelgen-Verilog



Gnucap & historical context

▸ The Gnu Circuit Analysis Package

▸ Modular design, C++ codebase

▸ Small library with (user) extensions

History

▸ 1973-1989. SPICE 1-3: final: ’93

▸ 1990. ACS, Al’s Circuit Simulator

▸ 1992... GPL’d, The original ”fast spice”

▸ 1995 Verilog (as we know it)

▸ 2000 Verilog-AMS, early traces

▸ 2001... ACS Renamed to Gnucap, a GNU project

▸ 2004 Larrys talk “Is it time for SPICE4”

▸ 2022 Gnucap supported by NLnet (ongoing)

▸ 2023 initial Modelgen-Verilog



Verilog-AMS (as of 2025)

▸ Open Standard, based on IEEE 1364-2005

▸ Analog, digital and in between

▸ Popular Hardware description language

Different sections for different applications

▸ Structural Verilog: Circuits and Netlists

▸ Verilog-95: Very popular in digital domain

▸ Verilog-A: from “SPICE” models up to system level

▸ Verilog-AMS: bridge -A to -95

▸ System-Verilog-AMS: more to come



Verilog-AMS (as of 2025)

▸ Open Standard, based on IEEE 1364-2005

▸ Analog, digital and in between

▸ Popular Hardware description language

Different sections for different applications

▸ Structural Verilog: Circuits and Netlists

▸ Verilog-95: Very popular in digital domain

▸ Verilog-A: from “SPICE” models up to system level

▸ Verilog-AMS: bridge -A to -95

▸ System-Verilog-AMS: more to come



Modelgen-Verilog: Overview

▸ Model compiler of the Gnucap project

▸ Inspired by modelgen which inspired Verilog-AMS..

▸ Goal: models for VLSI-ready simulation

▸ Approach: Turn models into plugin code

Key Features

▸ Modular design, retargettable

▸ Code generated by program
(not Bytecode, not filling templates)

▸ Add Verilog-AMS behavioural modelling to Gnucap
(and what Verilog-AMS entails)



Modelgen-Verilog: Overview

▸ Model compiler of the Gnucap project

▸ Inspired by modelgen which inspired Verilog-AMS..

▸ Goal: models for VLSI-ready simulation

▸ Approach: Turn models into plugin code

Key Features

▸ Modular design, retargettable

▸ Code generated by program
(not Bytecode, not filling templates)

▸ Add Verilog-AMS behavioural modelling to Gnucap
(and what Verilog-AMS entails)



Verilog-AMS coverage in Modelgen-Verilog

Basic analog modelling

▸ ports, parameters

▸ control blocks

▸ integrate, differentiate

▸ contributions

▸ Small signal AC & noise

Beyond SPICE/analog

▸ hierarchy (aka. subdevices)

▸ (compiled) paramset, binning

▸ analog filters, freq. domain modelling

▸ events, switching branches etc.

▸ Some digital: logic primitives, UDP



Verilog-AMS coverage in Modelgen-Verilog

Basic analog modelling

▸ ports, parameters

▸ control blocks

▸ integrate, differentiate

▸ contributions

▸ Small signal AC & noise

Beyond SPICE/analog

▸ hierarchy (aka. subdevices)

▸ (compiled) paramset, binning

▸ analog filters, freq. domain modelling

▸ events, switching branches etc.

▸ Some digital: logic primitives, UDP



Achievements and progress since FSiC ’24
New deep stuff, impossible without funding (NLnet!)

▸ Pluggable matrix solver

▸ Quantized time in event driven simulation

▸ Compliant logic primitives, UDP

▸ Predictor, prepare for multi-rate

▸ Ground statement, same-port devices etc.

▸ Per device integration method

▸ Hierarchical temperature

▸ Numerous improvements (see resp. NEWS files)

Under review/testing

▸ pluggable node ordering

▸ selective trace algorithm

▸ connect module placement

Side tracks

▸ Qucs: revival & Verilog-S dump

▸ Verilog-AMS QA (in preparation)



Achievements and progress since FSiC ’24
New deep stuff, impossible without funding (NLnet!)

▸ Pluggable matrix solver

▸ Quantized time in event driven simulation

▸ Compliant logic primitives, UDP

▸ Predictor, prepare for multi-rate

▸ Ground statement, same-port devices etc.

▸ Per device integration method

▸ Hierarchical temperature

▸ Numerous improvements (see resp. NEWS files)

Under review/testing

▸ pluggable node ordering

▸ selective trace algorithm

▸ connect module placement

Side tracks

▸ Qucs: revival & Verilog-S dump

▸ Verilog-AMS QA (in preparation)



Achievements and progress since FSiC ’24
New deep stuff, impossible without funding (NLnet!)

▸ Pluggable matrix solver

▸ Quantized time in event driven simulation

▸ Compliant logic primitives, UDP

▸ Predictor, prepare for multi-rate

▸ Ground statement, same-port devices etc.

▸ Per device integration method

▸ Hierarchical temperature

▸ Numerous improvements (see resp. NEWS files)

Under review/testing

▸ pluggable node ordering

▸ selective trace algorithm

▸ connect module placement

Side tracks

▸ Qucs: revival & Verilog-S dump

▸ Verilog-AMS QA (in preparation)



Data exchange I: circuits

How To: Vendor independent circuit storage

▸ named device prototypes

▸ named port connections

▸ named instance parameters

▸ optional: metadata aka. attributes

▸ syntax: human readable

Existing ideas

▸ SPICE netlist & friends

▸ gEDA/lepton, Qucs, xschem etc. drawings

▸ XML, Json conglomerates

▸ Structural Verilog

(* spice=R *) resistor #(.r(1k)) r1(.p(a), .p(b));



Data exchange I: circuits

How To: Vendor independent circuit storage

▸ named device prototypes

▸ named port connections

▸ named instance parameters

▸ optional: metadata aka. attributes

▸ syntax: human readable

Existing ideas

▸ SPICE netlist & friends

▸ gEDA/lepton, Qucs, xschem etc. drawings

▸ XML, Json conglomerates

▸ Structural Verilog

(* spice=R *) resistor #(.r(1k)) r1(.p(a), .p(b));



Data exchange I: circuits

How To: Vendor independent circuit storage

▸ named device prototypes

▸ named port connections

▸ named instance parameters

▸ optional: metadata aka. attributes

▸ syntax: human readable

Existing ideas

▸ SPICE netlist & friends

▸ gEDA/lepton, Qucs, xschem etc. drawings

▸ XML, Json conglomerates

▸ Structural Verilog

(* spice=R *) resistor #(.r(1k)) r1(.p(a), .p(b));



Data exchange II: schematics

Well established graphical representation

▸ Edit circuits without text editor

▸ Introduce beginners, 1llustrate concepts

▸ Often: Lock-in (“can I get my circuit?” – “no!”)

We also want schematics, but done right

▸ Schematics are circuits, not drawings

▸ Screen positions is markup, the circuit is primary

▸ Store schematics as circuits (see above)

▸ Pick a syntax, here: Verilog

▸ add few markup conventions: Verilog-S

(* S0 x p=42, S0 y p=100 *)

resistor #(.r(1k)) r1(.p(a), .p(b));



Data exchange II: schematics

Well established graphical representation

▸ Edit circuits without text editor

▸ Introduce beginners, 1llustrate concepts

▸ Often: Lock-in (“can I get my circuit?” – “no!”)

We also want schematics, but done right

▸ Schematics are circuits, not drawings

▸ Screen positions is markup, the circuit is primary

▸ Store schematics as circuits (see above)

▸ Pick a syntax, here: Verilog

▸ add few markup conventions: Verilog-S

(* S0 x p=42, S0 y p=100 *)

resistor #(.r(1k)) r1(.p(a), .p(b));



Data exchange II: schematics

Well established graphical representation

▸ Edit circuits without text editor

▸ Introduce beginners, 1llustrate concepts

▸ Often: Lock-in (“can I get my circuit?” – “no!”)

We also want schematics, but done right

▸ Schematics are circuits, not drawings

▸ Screen positions is markup, the circuit is primary

▸ Store schematics as circuits (see above)

▸ Pick a syntax, here: Verilog

▸ add few markup conventions: Verilog-S

(* S0 x p=42, S0 y p=100 *)

resistor #(.r(1k)) r1(.p(a), .p(b));



Data exchange III: implementation status
gnucap-geda: use gEDA/lepton schematics

▸ Well organised format, but missing circuit

▸ Reconstruct connections (using device library)

▸ Dump into Verilog-S for use without gEDA/lepton

▸ Roundtrip: now implemented. Lossless is possible

Qucs: towards a native Verilog-AMS GUI

▸ Native files are too messy to use, hence

▸ Add code to dump Verilog-S, then parse.

▸ No more need for messy files.

▸ Replace messy file format (nearly there)

Plans (Volunteers?)

▸ Lossless transfer between the two (including symbols)

▸ Import from others. KiCAD? XSchem?

▸ Upcycle data from commercial tools.



Data exchange III: implementation status
gnucap-geda: use gEDA/lepton schematics

▸ Well organised format, but missing circuit

▸ Reconstruct connections (using device library)

▸ Dump into Verilog-S for use without gEDA/lepton

▸ Roundtrip: now implemented. Lossless is possible

Qucs: towards a native Verilog-AMS GUI

▸ Native files are too messy to use, hence

▸ Add code to dump Verilog-S, then parse.

▸ No more need for messy files.

▸ Replace messy file format (nearly there)

Plans (Volunteers?)

▸ Lossless transfer between the two (including symbols)

▸ Import from others. KiCAD? XSchem?

▸ Upcycle data from commercial tools.



Data exchange III: implementation status
gnucap-geda: use gEDA/lepton schematics

▸ Well organised format, but missing circuit

▸ Reconstruct connections (using device library)

▸ Dump into Verilog-S for use without gEDA/lepton

▸ Roundtrip: now implemented. Lossless is possible

Qucs: towards a native Verilog-AMS GUI

▸ Native files are too messy to use, hence

▸ Add code to dump Verilog-S, then parse.

▸ No more need for messy files.

▸ Replace messy file format (nearly there)

Plans (Volunteers?)

▸ Lossless transfer between the two (including symbols)

▸ Import from others. KiCAD? XSchem?

▸ Upcycle data from commercial tools.



Conclusion & Outlook

▸ New algorithms taking shape

▸ Towards free/libre Verilog-AMS implementation

▸ Demonstrated standardisation and interoperability

New Grant awarded for 2025/2026

▸ More of Verilog-AMS in the pipeline

▸ Revamp of the SPICE subsystem, B sources etc.

▸ Will follow user requests: e.g. VCD output

▸ Tackling speed issues

Internship funding available, too

▸ OpenVAF wrapper? KLU wrapper?

▸ Revisit convolution based filters?

▸ Anything really.



Conclusion & Outlook

▸ New algorithms taking shape

▸ Towards free/libre Verilog-AMS implementation

▸ Demonstrated standardisation and interoperability

New Grant awarded for 2025/2026

▸ More of Verilog-AMS in the pipeline

▸ Revamp of the SPICE subsystem, B sources etc.

▸ Will follow user requests: e.g. VCD output

▸ Tackling speed issues

Internship funding available, too

▸ OpenVAF wrapper? KLU wrapper?

▸ Revisit convolution based filters?

▸ Anything really.



Conclusion & Outlook

▸ New algorithms taking shape

▸ Towards free/libre Verilog-AMS implementation

▸ Demonstrated standardisation and interoperability

New Grant awarded for 2025/2026

▸ More of Verilog-AMS in the pipeline

▸ Revamp of the SPICE subsystem, B sources etc.

▸ Will follow user requests: e.g. VCD output

▸ Tackling speed issues

Internship funding available, too

▸ OpenVAF wrapper? KLU wrapper?

▸ Revisit convolution based filters?

▸ Anything really.



Thanks!

Questions?


