
Merging Gnucap and Qucs – the Why and How

Felix Salfelder

FSIC 22



Content

▶ Gnucap & QUCS, what is it?

▶ Complementary features

▶ Motivation for a merge

▶ Recent Prototype work

▶ Further roadmap

▶ Help needed



Gnucap, overview

Gnucap

gEDA/gaf schematicssymbols

UI

CLI

Python
bridge

C++ API

Ngspice
component
models

netlists/
macros

QUCS

schematic
capture

component
models

algorithms

(noise,
sens)

fourier

dc/op

ac/sp tr (mixed)



QUCS – Quite Universal Circuit Simulator

Qucs
(GUI)

plotting

schematic
capture

Qucsator &
components

Icarus VVP,
GHDL

(NGspice,
Xyce)

filter design



Complementary features
Gnucap

▶ Modern architecture (Post-Spice, C++)

▶ Plugin defined applications

▶ Foreign model support

▶ Interactive UI

QUCS

▶ Qt GUI, schematic editor

▶ run Simulator & alternatives
▶ Component library

- many real world devices
- macros and parameter sets

▶ filter design tools

Really want

▶ The union of the above

▶ more



Complementary features
Gnucap

▶ Modern architecture (Post-Spice, C++)

▶ Plugin defined applications

▶ Foreign model support

▶ Interactive UI

QUCS

▶ Qt GUI, schematic editor

▶ run Simulator & alternatives
▶ Component library

- many real world devices
- macros and parameter sets

▶ filter design tools

Really want

▶ The union of the above

▶ more



Rationale behind the merge

▶ Want the union of features

▶ Synergies

- Qucs with plugins
- GUI for Gnucap
- Python bridge for Qucs

▶ Stop catch up between Gnucap, Qucs, Ngspice

▶ Need some degree of teamwork in the long run

▶ Integrate more projects

▶ Know what to choose from, what to contribute to

Towards the merge of the two

▶ Gnucsator

▶ modular Qucs



Rationale behind the merge

▶ Want the union of features

▶ Synergies

- Qucs with plugins
- GUI for Gnucap
- Python bridge for Qucs

▶ Stop catch up between Gnucap, Qucs, Ngspice

▶ Need some degree of teamwork in the long run

▶ Integrate more projects

▶ Know what to choose from, what to contribute to

Towards the merge of the two

▶ Gnucsator

▶ modular Qucs



Prototypes towards the merge

Gnucsator

▶ Gnucap plugins

▶ Wrapper for some Qucsator components

▶ Read/write Qucs netlists & data

▶ Constitutes Qucsator replacement

▶ Few incremental releases

modular Qucs

▶ Refactor Qucs (long overdue)

▶ Overcome Qt3 deadlock

▶ Explore plugin architecture

▶ Extend interoperability



Prototypes towards the merge

Gnucsator

▶ Gnucap plugins

▶ Wrapper for some Qucsator components

▶ Read/write Qucs netlists & data

▶ Constitutes Qucsator replacement

▶ Few incremental releases

modular Qucs

▶ Refactor Qucs (long overdue)

▶ Overcome Qt3 deadlock

▶ Explore plugin architecture

▶ Extend interoperability



modular Qucs now

▶ Looks like ”legacy Qucs”, but uses Qt5

▶ Explicit circuit underneath the drawing

▶ File format plugins: Both, legacy Qucs and Verilog

▶ Interaction/dialogs/graphics are plugins

▶ Simulation is negotiated through plugins

▶ Schematic editor is a plugin

▶ Data is managed by plugins

▶ Visualisation (plot) plugins

▶ ”multi view” components are plugin defined.

▶ Has a command line interface.

▶ Lacks some of the Qucs features.

▶ Plugins don’t work with Gnucap



modular Qucs now

modes and interaction

components

wires

subcircuits

simulation
controls

visualisation

labels

libraries

Schematic file
- Legacy
- Verilog
- (any)

Netlist file
- Qucsator
- Verilog
- Spice ...
- (any)

Data
- Legacy (”dat”)
- hdf5 (wip)
- shared mem (wip)
- (any)

Simulation
- Subprocess
- Shared library
- (any)

Devices
- Legacy (C++)
- Legacy ”lib” files
- ”multi view”
- (any)



Proposed merge, overview

Gnucap &
modular Qucs

merged

netlists,
schematics

gEDA

Qucs Verilog

Spice

UI

Qt GUI

CLI

Python
bridge

C++ API

components native

NgspiceQucsator

Simulators

Qucsator
Icarus
VVP

(Ngspice,
Xyce)

algorithms

(noise,
sens)

fourier

dc/op

ac/sp tr (mixed)



The technical side, how to do it?

▶ Tweak Gnucap a bit

- define interaction patterns
- add some hooks

▶ Decruft/un-hack modular Qucs

- decouple GUI from library
- add back some code into plugins

▶ conform the libraries
... until modular Qucs equals Gnucap

▶ Eventually fold in

- Gnucsator models
- code from Qucs forks, as plugins



Thanks to past contributors

▶ Gnucsator

- Fabian Vallon (first steps)
- Szymon Blachuta (.dat file creation)
- Dow Drake (loads of testing)
- Daniel Mulholland (testing)

▶ gnucap-geda

- Karl Hammar (gEDA symbol insights)
- Cheng Fei Phung (example schematics)

▶ gnucap-python

- Henrik Johansson (idea, first steps)
- Patrick Mulder (early testing)
- Ruben Undheim (help with Debian package)

▶ modular Qucs testing & discussions

- Micha l Walenciak
- Martin Marmsoler
- Guilherme Brondani Torri



Help needed

▶ Try, report issues

▶ write Documentation

▶ provide Examples
▶ Contribute your own plugins

- Spice driver(s)
- gEDA components
- more file formats
- [any, really]

▶ How to secure funding?

- Gnucap/Qucs merge
- Verilog/AMS support
- Filling the gaps



What are plugins again?

▶ Single file, distinct purpose

▶ Mutually independent, no interference

▶ Dynamically loaded (dlopen)

▶ Well known from Linux, Python, Gnucap, ...

▶ Even Qt5 plays with plugins

▶ Enable decentralised development

▶ Avoid license issues

▶ Critical: sensible core library underneath


